
The features of the unperturbed profile Uz also affect the phase velocities of neutral 
perturbations. For N = 0 for example in the case of constant viscosity, the phase velocity 
changes sign with a change in the parameters along the neutral curve (Fig. 2) so that the 
point k = 2.61 (versus k = 2.65 in [7]) corresponds to a neutral "standing" perturbation. 
With an increase in y, standing perturbations are shifted into the shortwave region. For 
example, at Y = 0.5 and N = 0, k = 2.62. For other values of N~0, perturbations with a 
phase velocity equal to zero cannot exist (Fig. 2), i.e., the perturbations drift along the 
flow. We might point out the oddness of the profile in the special case N = i and y = 0.5 
[6], and "standing" perturbations are again possible for k = 0.82. 

NOTATION 

p, convective pressure reckoned from the hydrostatic pressure at the mean density p; ~, 
kinematic viscosity coefficient; B, X, coefficient of linear expansion and diffusivity, 
assumed constant; g, acceleration due to gravity; Cp, specific heat. 
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DEPENDENCE OF THE MASS TRANSFER DURING DISSOLUTION OF AI~ROUGH 

WALL IN A PLANE CHANNEL ON THE STRUCTURE OF THE STREAM 

L. A. Polyakova and V. G. Shakhov UDC 66.015.23:532.5 

A channel wall with a sinusoidally rough surface is considered and the location 
of the point on this surface where the diffusion current reaches its maximum is 
determined, depending on the Reynolds number as well as on the roughness wave- 
length and amplitude. 

The equation of vortex transport for the flow function ~ and the boundary conditions for 
steady two-dimensional flow of a viscous incompressible fluid through a plane channel are 

0~ +2 0~ -4- 0~ 1[ 0~ 0A~ 0~ 0A~] 
Oz ~ Ox20y - - - - - - T  ' Oy - - T  = -~ Oy Ox Ox Oy ' ( 1 )  
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g = 0  O~ _ 0 ;  y = •  0r _ 0r _ 0 .  
Ox ax ay (2) 

2~x 
Here A i s  t he  L a p l a c e  o p e r a t o r  and hi = h0-~ A c o s - -  i s  t he  c h a n n e l  h a l f  w i d t h ,  E q u a t i o n  (1) 

can be r educed  to d i m e n s i o n l e s s  form by i n t r o d u c t i o n  of  the  d i m e n s i o n l e s s  c o o r d i n a t e s  q = y]A 
and ~=x/X, with small parameters e = A/X and ~ = A'/ho, and the dimensionless flow function 

= ~(UmaxA). With the solution sought in the form of the series 

; ~" = ~ ~ g ~  (~, ~, R, 6) 
h~O 

as proposed in another study [2], it is possible to extract from Eq. (i) 
power in k and to form dimensionless equations describing, respectively, 
order, second-order, etc. flow 

(3) 

terms of the same 
zeroth-order, first- 

O ~ ~  - -  O, 
Oq ~, , (4) 

at~I/ i  �9 R ( olI~o o31~to aki/o asL]to ) 

O~l ~ a~l 0~0~ 2 O~ &l ~ ' (5) 

o*~. = - -  2 O~~ ( a~o aa~, o ~  a~o o~ o oa~i o~g, 
O~ ~ O~O~l ~ + R an o~aq - - - - T  § on o~an ~ o~ a~ a~ 

Oa~~ ) (6) 
a ~  , 

O~ ~ O~zO----- T -k R 0~ O~Oq ~ + O~ O~O~ z § 

aY2 a3% av4 a3~2 a ~  a3~ a ~  a3Yo ] ( aYo a~% 
§ o~l o~a~l z o~ o~l ~ a~ oq 3 at 0~13 , § R \ a~l o~ 3 

w i t h  t h e  boundary  c o n d i t i o n s  

a~o 03~o ) 
at a~2a,1 (7) 

~] = 0 ~'qO'~__O - -  O ~ i  - -  . . .  = O, r'q W~2__O - -  - - 0 2 ~ i  - -  . . .  = O, 

0~ 0~ 0~ 2 0q 2 

2 
~ o  - -  , ~ i  = ~ . . . . .  0, 

3 

= h 0~0 0~gt =- 0, 0~o 0~t  = 0, 
a~ a~ a~ a~ 

T0 = T , - -  . . .  = 0, ( 8 )  

where t he  Reynolds  number i s  NRe = UmaxA/v and h = h /A. Upon chang ing  to t he  v a r i a b l e s  ~: = 
and Y = H/h, Eqs. ( 4 ) - ( 7 )  can be i n t e g r a t e d  and t h e i r  s o l u t i o n  o b t a i n e d  in  t he  form (3) 

o o  2h n--I  

E E E  -- Y . . . . .  ~- Y(1 - -  yz)z s~A2h n(n--  m) yzm, 
3 3 

k = ,  n=, m=0 ( 9 )  

where the coefficients hak,n are functions of ~: 

A~t-- 30Rh' ," A2~-- Rh'" ' h 2 + 0 " 3 ( ~ ) 2 h 2 q -  

Rh A2,]; Rh A~i]" 
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Ao,-- 1201 Sh~ [132A'2'--792 (A-~h )A2'--396 (A-A-~A ) "A~' 7 
-7-1188 (-~-)2 A=,]-I-P',A3 [--(-~-)"-P" 2 (~~-')' (-~-)] +ITh[--lOA~,--14A~--lsA'~3--22A'~4.j-(h_~h) 

A62 _ 1 (400 h' " 

--1000(h)2]]-~ I~h312 (~)" 8 (~]" (~)]-~ Rh[28A41 ~-]2A42~-16A43~-20A~4--(~) X 

A 6 3  = _ _  

X (48A~i + 72A~ + 

1 

X 

5756 ~2 I 52 , 

84A~2-5 60A~i + ~ 21 7 

[ ] A6~-- I 72A~3--40A~2+ -- 144A~3 + 122A~3 i928 A~I i 1432 A2,A~ 
792o 7 4--7- ' 

A85-- 1 - - [ l 1 0 A ; 4 - - 7 0 A ~ 3  q- (-- 290A~ + 180A~3-{- 100AS0 80 
17166 _ . ,  7 -  - 

A66 -- 132766 - -  108A44 -}- (264A~-- 12A~1) -}- ~-A2~A2, ; 

Here the prime sign denotes differentiation with respect to ~. 

In the region adjacent to the wall, where Y = i, the flow function ~ can be expressed as 

---- -- (I -- Y)Z (I -- ~), (10) 

where 

2h  n--1 

~----4 Z ZshA:~,,,(nirn). 
h = l  n = l  r n ~ O  

This solution can be used for determining the components of the stream velocity 

and v 0~ along the areas x and y, respectively. 
0x 

ty components are 

U - -  1 0~ V =--e . . . . .  
h OY' 0~t h OF ' 

o r ,  t a k i n g  i n t o  a c c o u n t  r e l a t i o n  ( 1 0 ) ,  t h e y  a r e  d e s c r i b e d  by t h e  e q u a l i t i e s  

u : 0~_' 
In the dimensionless form these velodi- 

9 
U = ~ (I -- Y) (I -- ~), (ii) 

Y 

V = 2 8  1 - -  Y) ( 1 - -  ~). 
Y (i2~ 

In the cases of either separation flow or nonseparation flow one can, on the basis of 
the Reynolds analogy and its equivalent in terms of forces [3], expect the diffusion current 
with a constant dynamic viscosity to be maximum at the point of maximum internal friction. 

This point is determined by the value of dUs I , with U s denoting the tangential component 
dn t~,=1 
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Fig. i. Streamline pattern ~ at a rough wall: a) 
6 = 0.i; ~ = 0.01;NRe =25; i) ~ =--0.01; 2) --0.i; 3) 
--0.2; 4) -0.5; b) ~ = 0.i; ~ = 0.01; NRe = ii0; i) 

= 0.003; 2) 0.0003; 3) --0.0003; 4) -0.01; 5) -0.1; 

6) - 0 . 5 .  

. 0 7 / . ~  

~32~ /00 
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Fig. 2. Dependence of the loca- 
tion of the point on the channel 
surface with the maximum diffu- 
sion current on the Reynolds 
number, at various values of 
and 6: i) ~ = 0.01, ~ = 0.002; 
2) 0.05 and 0.01; 3) 0.i and 
0.02; 4) 0.01 and 0.001; 5) 0.01 
and 0.005; 6) 0.i and 0.01. 

of velocity along the wall contour, referred to Umax, and n is the normal to the wall referred 
to A. With U s expressed as 

U8 = U c o s O + V s i n O ,  

where 0 is the inclination angle of the wall, relations (ii) and (12) yield for dUSdn y=1 

dUs r=l 2 an = ha (1 + ~Uh") ( 1 - -  ~). (13) 

From e x p r e s s i o n s  (13) one can  d e t e r m i n e  t h e  c o n d i t i o n s  u n d e r  which  t h e  s u r f a c e  r o u g h n e s s  
of  t h e  c h a n n e l  w a l l  w i l l  d e c r e a s e .  When t h e  f r i c t i o n a l  s t r e s s  i s  maximum a t  ~x = 0 . 5 ,  t h e n  
d i s s o l u t i o n  o f  t h e  m a t e r i a l  o f  c o n v e x i t i e s  w i l l  p r e d o m i n a t e  and t h e  a m p l i t u d e  o f  r o u g h n e s s  
w i l l  d e c r e a s e .  When t h e  f r i c t i o n a l  s t r e s s  i s  maximum a t  ~x ~ 0 . 5 ,  t h e n  t h e  r o u g h n e s s  p r o f i l e  
w i l l  c h a n g e .  

An evaluation of the function dU~dn Ir=l with the aid of a Nairi-K computer, according to 

relation (13), has revealed that with ~ = 0.i, e = 0.01, and NRe = 20 there takes place a 
laminar streamlining of the asperities and the diffusion current is maximum at the point 

= 0.45 (point A in Fig. la). As the Reynolds number increases to 60, the streamlining 
remains laminar but the point of maximum diffusion current shifts to ~ = 0.50 now. As the 
Reynolds number increases further, up to the limit imposed by the requirement that series 
(3) remains a convergent one, there occurs a separation of the stream and a vortex forms whose 
dimensions increase while the point of maximum diffusion current shifts toward ~ = i. The 
streamline pattern with NRe = ii0, e.g., is shown in Fig. lb. Here the diffusion current is 
maximum at the point ~I = 0.65 (point A in Fig. ib). Formation of a vortex depends largely 
on the value of e. As this parameter increases, a vortex forms and the point of maximum dif- 
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fusion current shifts toward ~ = i at lower values of the Reynolds number (Fig. 2). The 

(dUsl 1 /IdUsI ~ " increases with higher values of the Rey- surface smoothing factor c= "~'-n[y=llmax/-~n[y=llmin_o~lj,\_.., " 

nolds number: c = 1.2 when NRe = 20 and c = 2.1 when NRe = 100. 

Therefore, a dissolving surface is smoothed most intensely prior to formation of a vor- 
tex in a surface cavity. The roughness amplitude changes during dissolution and, therefore, 
the optimum conditions for smoothing will be ensured only by maintenance of a continuously 
vortex-free mode of streamlining. 

The results of this study can be utilized in setting up the finish treatment in chemical 
manufacturing processes, in electrochemical polishing, and in other technologies where forma- 
tion of the roughness microprofile of surfaces is largely influenced by the hydrodynamics 
of their streamlining. 

NOTATION 

x, longitudinal coordinate; y, normal coordinate; ~, ~, Y, dimensionless coordinates; 
ho, mean channel half-width; ~, channel half-width; h, dimensionless channel half-width; %, 
roughness wavelength; A, roughness amplitude; ~, flow function; ~, dimensionless flow func- 
tion; Umax, maximum velocity in the channel; u, v, Us, velocity components along the x axis, 
the y axis, and along the wall contour, respectively; U, V, U s , dimensionless velocity com- 
ponents; v, kinematic viscosity; A2k,n , coefficients of the series expansion; NRe , Reynolds 
number; c, surface smoothing factor; and s, ~, parameters. 
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GROWTH OF PARAFFIN DEPOSITS ON THE PIPE SURFACE 

IN A STREAM OF OIL 

B. A. Krasovitskii and V. I. Maron 

In describing the kinetics of the growth of a layer, it was taken that the solidi- 
fication temperature is a variable and depends on the paraffin concentration in 
the stream of oil in a pipe. 

UDC 532.507 

When the soil temperature in the vicinity of a pipe transporting paraffinous crude drops, 
the layers of the liquid near the pipe surface solidify and lose their mobility. These phe- 
nomena are connected with the appearance of paraffin crystals in the near-wall layers of the 
liquid; these crystals form the structure within which the liquid is retarded. The tempera- 
ture at which the near-wall layers of the liquid lose their mobility is called the solidifi- 
cation point. Experiments showed that the solidification point depends on the paraffin con- 
centration in the stream [i]. This circumstance must be taken into account in describing 
the kinetics of the growth of the layer of deposits on the inner pipe surface. 
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